1. A. Boré, P. Proynov, and D. Rafalskyi
Improved control architecture and strategy for iodine ion thruster following in-orbit demonstration and system-level radiation testing
Journal of Electric Propulsion 2, Article number: 7 (2023)
[https://doi.org/10.1007/s44205-023-00041-2]
2. T. Lafleur, L. Habl, E. Zorzoli Rossi, and D. Rafalskyi
Development and validation of an iodine plasma model for gridded ion thrusters
Plasma Sources Science and Technology 31, 114001 (2022)
[https://doi.org/10.1088/1361-6595/ac9ad7]
3. J. Martínez Martínez and D. Rafalskyi
Design and Development of Iodine Flow Control Systems for Miniaturized Thrusters
CEAS Space J, 14, 91-107 (2022)
[https://doi.org/10.1007/s12567-021-00384-2]
4. D. Rafalskyi, J. Martínez Martínez, L. Habl, E. Zorzoli Rossi, P. Proynov, A. Boré, T. Baret, A. Poyet, T. Lafleur, S. Dudin and A. Aanesland
In-orbit demonstration of an iodine electric propulsion system
Nature (2021).
[https://doi.org/10.1038/s41586-021-04015-y]
5. T. Lafleur and C. Corr
Characterization of a radio-frequency inductively coupled electrothermal plasma thruster
Journal of Applied Physics, vol. 130, no. 4, p. 043304 (2021).
[https://doi.org/10.1063/5.0056124]
6. L. Habl, D. Rafalskyi, and T. Lafleur
Secondary electron emission due to multi-species iodine ion bombardment of different target materials
Journal of Applied Physics, vol. 129, no. 15, p. 153302 (2021).
[https://doi.org/10.1063/5.0048447]
7. L. Habl, T. Lafleur, D. Rafalskyi and P. Chabert
Plasma plume expansion with pulsed electron neutralization
Plasma Sources Science and Technology, vol. 30, no. 4, p. 045014 (2021).
[https://doi.org/10.1088/1361-6595/abf1d5]
8. T. Lafleur
Space-charge induced particle reflection between hybrid AC/DC biased electrodes
Plasma Sources Science and Technology, vol. 30, no. 5, p. 055018 (2021).
[https://doi.org/10.1088/1361-6595/abfbed]
9. T. Lafleur and N. Apffel
LEO constellation phasing using miniaturized low-thrust propulsion systems
Journal of Spacecraft and Rockets, in press (2020).
[https://doi.org/10.2514/1.A34905]
10. L. Habl, D. Rafalskyi, and T. Lafleur
Ion beam diagnostic for the assessment of miniaturized electric propulsion systems
Review of Scientific Instruments 91, 093501 (2020).
[https://doi.org/10.1063/5.0010589]
11. T. Lafleur
Space-charge limited current with a finite injection velocity revisited
Plasma Sources Science and Technology, vol. 29, no. 6, p. 065002 (2020).
[https://doi.org/10.1088/1361-6595/ab9069]
12. T. Lafleur and D. Rafalskyi
Radio-frequency biasing of ion acceleration grids
Plasma Sources Science and Technology 27, 125004 (2018).
[https://doi.org/10.1088/1361-6595/aaf2b8]
13. D. Rafalskyi and A. Aanesland
Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source
Journal of Physics D: Applied Physics 47, 495203 (2014).
[https://doi.org/10.1088/0022-3727/47/49/495203]
Modeling and experimental results of low-power iodine-fed Hall thruster propulsion system
38th International Electric Propulsion Conference, Toulouse, France, June 23-28, 2024 - Paper IEPC-2024-121
Inference of iodine ion thruster performance envelope at system-level using neural networks
38th International Electric Propulsion Conference, Toulouse, France, June 23-28, 2024 - Paper IEPC-2024-287
Lifetime testing challenges of a complete iodine-based electric propulsion system
38th International Electric Propulsion Conference, Toulouse, France, June 23-28, 2024 - Paper IEPC-2024-627
A global model of an iodine-fed Hall thruster
38th International Electric Propulsion Conference, Toulouse, France, June 23-28, 2024 - Paper IEPC-2024-295
RF Plasma Flow Generator for LEO Environment Simulation: Use Cases
38th International Electric Propulsion Conference, Toulouse, France, June 23-28, 2024 - Paper IEPC-2024-337
Development of low-power iodine-fed Hall thruster propulsion system
9th International Space Propulsion Conference 2024, Glasgow, Scotland, May 20-23, 2024
Performance mapping of the NPT30-I2 iodine-propelled ion thruster
9th International Space Propulsion Conference 2024, Glasgow, Scotland, May 20-23, 2024
Development of NPT30 Iodine Ion Thruster from Conception to Mass Production
9th International Space Propulsion Conference 2024, Glasgow, Scotland, May 20-23, 2024
Improved Control Architecture and Strategy for Iodine Ion Thruster following In-Orbit Demonstration and System-Level Radiation Testing
37th International Electric Propulsion Conference 2022, Massachusetts institute of Technology, Cambridge, MA USA, June 19-23, 2022, Paper IEPC-2022-244.
[https://www.electricrocket.org/IEPC_2022_Papers.html]
10. Boré, A., Proynov, P., Rafalskyi, D.
Control and Safety Algorithms of the NPT30-I2 Stand-alone Iodine Ion Thruster
8th International Space Propulsion Conference 2022, Estoril, Portugal, May 09-13, 2022.
11. Bianchi, F. M., Zorzoli Rossi, E., Pimenta Cyrne, F., Coral, G.
Proof of Concept and Preliminary Design of a Superheated Water Vapor Thruster
8th International Space Propulsion Conference 2022, Estoril, Portugal, May 09-13, 2022.
12. Martínez Martínez, J.
Optimization of the Ignition Delay of a Xenon Miniaturized Gridded Ion Thruster
International Astronautical Congress 2021, Dubai, United Arab Emirates, October 25-29, 2021.
13. Rafalskyi, D., Martínez Martínez, J., Habl, L., and Aanesland, A.
Development and In-Flight Testing of an Iodine Ion Thruster
35th Annual Small Satellite Conference, Utah State University, Logan, Utah, August 7-12, 2021, Paper SSC21-XI-04.
[https://digitalcommons.usu.edu/cgi/SSC21-XI-04]
14. Rafalskyi, D., Martínez Martínez, J., Habl,L., Zorzoli Rossi, E., Proynov, P., Boré, A., Baret, T., Poyet, A., Lafleur, T., Dudin, S., Aanesland, A.
Development, Testing and First In-Orbit Results of an Iodine Electric Propulsion System
AIAA Propulsion and Energy Forum, 2021.
15. Rafalskyi, D., Martíinez Martínez, J., Habl,L., Zorzoli Rossi, E. & Lafleur, T
Performance Characterization of a Miniaturized Gridded Ion Thruster Working with Iodine
AIAA Propulsion and Energy Forum, 2021.
16. Martínez Martínez, J and D. Rafalskyi
Development of Iodine Propellant and Flow Control Units suitable for Multiple Propulsion Systems
Space Propulsion 2020+1 3AF, 2020.
17. Zorzoli Rossi, E., Martinez Martinez, J. and Rafalskyi, D.
Direct Thrust Measurements of an Iodine Cold Gas Propulsion System
Space Propulsion 2020+1 3AF, 2021.
18. J. Martinez Martínez, D. Rafalskyi, A. Aanesland, X. Laurand, S. Vega Martinez, and G. Quinsac
An Off-Axis Iodine Propulsion System for the Robusta-3A Mission
Small Satellite Conference, Utah State University, 2020.
[https://digitalcommons.usu.edu/smallsat/2020/all2020/154/]
19. J. Martínez Martínez, D. Rafalskyi, E. Zorzoli Rossi and A. Aanesland
Development, Qualification and First Flight Data of the Iodine Based Cold Gas Thruster for CubeSats
5th IAA Conference on University Satellite Missions and CubeSat Workshop, Rome, Italy, January 28- 31, 2020.
[https://doi.org/10.6084/m9.figshare.11931384 ]
20. L. Habl, D. Rafalskyi, E. Z. Rossi, and A. Aanesland
Planar probe array for bidimensional mapping of the ion flux profile of a miniaturized ion thruster
36th International Electric Propulsion Conference, University of Vienna, Austria, September 15-20, 2019, Paper IEPC-2019-777.[https://electricrocket.org/2019/777.pdf]
21. T. Lafleur, D. Rafalskyi, and A. Aanesland
Radio-frequency biasing of ion thruster grids
36th International Electric Propulsion Conference, University of Vienna, Austria, September 15-20, 2019, Paper IEPC-2019-145.[https://electricrocket.org/2019/145.pdf]
22. J. Martínez Martínez, D. Rafalskyi and A. Aanesland
Development and Testing of the NPT30-I2 Iodine Ion Thruster
36th International Electric Propulsion Conference, University of Vienna, Austria,September 15-20, 2019, Paper IEPC-2019-811.
[https://doi.org/10.6084/m9.figshare.11931363.v1]